Appendix L: TUUSSO Solar Project Site Plans and Designs
PV POWER CONDITIONING SYSTEM:
IEEE 929 AND IEEE 1547 COMPLIANT- 1000VDC MAX INPUT VOLTAGE.

INVERTER EQUIPPED WITH INTEGRATED DC CIRCUIT BREAKER COMBINER.
STANDARD PLAN NOTES:

1. All elevations shown are based on finished grade at the top of the structure.
2. The proposed surface is subject to the approval of the professional engineer.
3. The contractor is responsible for all work included on this drawing.
4. The contractor shall comply with all applicable codes and regulations.
5. All materials shall meet the requirements specified in the contract documents.
6. The contractor shall provide all necessary work to achieve the desired results.
7. The contractor shall be responsible for all necessary permits and approvals.
8. The contractor shall complete all work within the specified time frame.
9. The contractor shall be responsible for all necessary cleanup at completion.
10. The contractor shall provide all necessary supports for the work.

GENERAL TEST NOTES:

1. All tests shall be conducted in accordance with the specified procedures.
2. The test results shall be documented and submitted to the professional engineer.
3. The test results shall be reviewed by the professional engineer before the work is approved.
4. The contractor shall be responsible for all necessary adjustments to the work.
5. The contractor shall be responsible for all necessary follow-up work.
6. The contractor shall be responsible for all necessary documentation.
7. The contractor shall be responsible for all necessary approvals.
8. The contractor shall be responsible for all necessary permits.
9. The contractor shall be responsible for all necessary supports for the test.
10. The contractor shall be responsible for all necessary cleanup at completion.

STANDARD GRADE NOTES:

1. All grades shown are based on finished grade at the top of the structure.
2. The proposed surface is subject to the approval of the professional engineer.
3. The contractor is responsible for all work included on this drawing.
4. The contractor shall comply with all applicable codes and regulations.
5. All materials shall meet the requirements specified in the contract documents.
6. The contractor shall provide all necessary work to achieve the desired results.
7. The contractor shall be responsible for all necessary permits and approvals.
8. The contractor shall complete all work within the specified time frame.
9. The contractor shall be responsible for all necessary cleanup at completion.
10. The contractor shall provide all necessary supports for the work.

CONTRACTOR RESPONSIBILITY:

1. All work shall be completed in accordance with the specifications and drawings.
2. The contractor shall be responsible for all necessary adjustments to the work.
3. The contractor shall be responsible for all necessary follow-up work.
4. The contractor shall be responsible for all necessary documentation.
5. The contractor shall be responsible for all necessary approvals.
6. The contractor shall be responsible for all necessary permits.
7. The contractor shall be responsible for all necessary supports for the work.
8. The contractor shall be responsible for all necessary cleanup at completion.

DISCREPANCIES:

1. Any discrepancies shall be reported to the professional engineer immediately.
2. The contractor shall be responsible for all necessary adjustments to the work.
3. The contractor shall be responsible for all necessary follow-up work.
4. The contractor shall be responsible for all necessary documentation.
5. The contractor shall be responsible for all necessary approvals.
6. The contractor shall be responsible for all necessary permits.
7. The contractor shall be responsible for all necessary supports for the work.
8. The contractor shall be responsible for all necessary cleanup at completion.
POI AT (E) POLE
(E) 12.47 kV DISTRIBUTION LINE
(N) POLE MOUNTED EQUIPMENT
TRANSITION FROM U/G TO O/H

PV POWER CONDITIONING SYSTEM:
IEEE 929 AND IEEE 1547 COMPLIANT - 1000VDC MAX INPUT VOLTAGE.
INVERTER EQUIPPED WITH INTEGRATED DC CIRCUIT BREAKER COMBINER.

NOTES:

KEYED NOTES:

TUSSO ENERGY
ENGINEERING
DEVELOPMENT
321-POLYGON // SACRAMENTO, CA
WWW.MAXPVENGINEERING.COM

FUMARIA SOLAR PROJECT
EQUIPMENT PAD WITH INVERTER(S), STEP UP TRANSFORMER, AND COMMUNICATION EQUIPMENT.
TRANSFORMER SPECIFICATIONS TBD. VERIFY WITH INVERTER MFR & PSE FOR FINAL TRANSFORMER CONFIGURATION.
PV POWER CONDITIONING SYSTEM:
- IEEE 929 AND IEEE 1547 COMPLIANT - 1000VDC MAX INPUT VOLTAGE.
- INVERTER EQUIPPED WITH INTEGRATED DC CIRCUIT BREAKER COMBINER.

NOTES:
- PENSTEMON SOLAR PROJECT
- EQUIPMENT PAD WITH INVERTER(S), STEP UP TRANSFORMER, AND COMMUNICATION EQUIPMENT.
- TRANSFORMER SPECIFICATIONS TBD. VERIFY WITH INVERTER MFR & PSE FOR FINAL TRANSFORMER CONFIGURATION.

TUSSO ENERGY
ENGINEERING
DEVELOPMENT
WWW.MAXPVENGINEERING.COM

E-601
Notes:

Keyed Notes:

PV Power Conditioning System:
IEEE 929 and IEEE 1547 Compliant - 1000VDC Max Input Voltage.

Inverter equipped with integrated DC Circuit Breaker Combiner.

Equine Pad with Inverter(s), Step Up Transformer, and Communication Equipment.

Transformer Specifications TBD. Verify with Inverter MFR & PSE for final Transformer Configuration.
PV POWER CONDITIONING SYSTEM: IEEE 929 AND IEEE 1547 COMPLIANT - 1000VDC MAX INPUT VOLTAGE. INVERTER EQUIPPED WITH INTEGRATED DC CIRCUIT BREAKER COMBINER.

NOTES:
- KEYED NOTES:

TUSSO ENERGY ENGINEERING
DEVELOPMENT
321-POLYGON // SACRAMENTO, CA
WWW.MAXPVENGINEERING.COM

URTICA SOLAR PROJECT
EQUIPMENT PAD WITH INVERTER(S), STEP UP TRANSFORMER, AND COMMUNICATION EQUIPMENT.
TRANSFORMER SPECIFICATIONS TBD. VERIFY WITH INVERTER MFR & PSE FOR FINAL TRANSFORMER CONFIGURATION.