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AN ADVANCED VOF ALGORITHM FOR

OIL BOOM DESIGN
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Abstract

In this paper, an accurate interface convection technique based on

the volume-of-fluid (VOF) scheme is presented and the concepts of

interface basis and three types of fluxes are introduced to handle

two-layer fluid flow in complex geometric situations. The scheme

was tested and the results proved to be accurate. We then compared

the computational simulation and the laboratory experiment of an

innovative boom arrangement. Satisfactory results indicate the

potential for using the computational technique developed in this

paper to aid in oil boom design as well as in other multilayer

immiscible flow applications.
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Nomenclature

C1, C2, C3 =oil collection zone
ρoil, ρwater, ρoil =density
µoil, µwater, µoil =dynamic viscosity
p =pressure
ui =velocity component in direction xi
t =time
f =volume fraction of oil
δij =Kronecker delta
Re, Fr =Reynolds number, Froude number
Df , Lf , Vf =flux
Vd, Voil =dark fluid volume, volume of oil
δm =global velocity divergence

1. Introduction

With billions of gallons of oil being transferred and stored
throughout the world, the potential for an oil spill is
significant. The inevitability of such spills and the need to
minimize environmental damage make it worth developing
effective and easy-to-apply oil slick collection methods.
The most common equipment used for controlling oil spills
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is the oil boom. Booms are used to contain the oil and keep
it from spreading prior to various oil removal techniques. In
an effort to achieve high oil collection efficiency, researchers
have investigated boom arrangement [1–4]. Such studies
are especially useful to oil spill recovery at inlets, rivers,
and canals.

The purpose of this paper is to establish a computa-
tional method to test the performance of designed boom
systems. Oil and water are immiscible fluids and are sep-
arated by an interface. Across the interface, the fluid
density and viscosity change dramatically. Because the
moving interface is highly coupled with fluid flows, the
location of the interface cannot be known in advance,
and it becomes an important part of the solution of this
kind of hydrodynamic system. A variety of methods are
available to handle the moving interfaces. Essentially,
they can be classified into two categories, the Eulerian or
the Lagrangrian methods. Lagrangrian methods, such as
boundary integral techniques [5, 6], finite element methods
[7, 8], and boundary-fitted coordinates [9, 10], maintain
the interface as a discontinuity and explicitly track its
evolution. No modelling is necessary to define the inter-
face, but it is difficult for Lagrangrian methods to handle
large interface deformation as well as interface folding and
merging. Eulerian methods have the potential for handling
large interface deformations. In these methods, the inter-
faces are not explicitly tracked out but are reconstructed
from the properties of appropriated field variables. Among
them, the Level-Set Method [11, 12] uses a distance func-
tion, and Marker-and-Cell (MAC) [13, 14] and volume-of-
fluid (VOF) makes use of a fluid volume fraction variable.
Level-Set Method can be easy to use in three-dimensional
problems, but its interface has a finite thickness, which is
artificially assigned, and the mass conservation is not guar-
anteed. The MAC method involves Eulerian flow field cal-
culation and Lagrangrian liquid-particle movement. The
velocity of a marker particle is found by taking the average
of the Eulerian velocity in its vicinity. The average velocity
field cannot be divergence-free again. Therefore, the MAC
method may create high or low marker number densities in
the cells. VOF method is not susceptible to the problems
that may be encountered when using the Level-Set or MAC
methods, but VOF methods become very complicated in
three-dimensional applications. Two further major prob-
lems arise for every VOF-based algorithm. One is how to
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reconstruct the exact interface geometry, and the other is
how to convect the interface.

We will first review some typical techniques for inter-
face reconstruction by VOF method. The earlier and well-
known technique is donor-acceptor technique [15]. The
orientation of an interface segment in a cell is assumed
to be either horizontal or vertical. This is the so-called
zeroth-order method. To improve the accuracy of interface
reconstruction, Young [16] and Ashgriz and Poo [17] used
a sloped line in each interface cell rather than a horizontal
or vertical line. The detailed method for calculating the
slope was described in FLAIR [17]. Recently, Kim [18]
developed a second-order model in which a second-order
linear curve fits the volume fraction distribution in a block
of 3× 3 cells, with the interface cell in the centre of this
block. A high-order model for interface reconstruction
makes the high-order VOF algorithm possible. Unfortu-
nately, in most current literature, the volume fraction con-
vection schemes are treated simply. Therefore the total
volume of one fluid is not conservative, and in some cells
the volume fraction may be greater than unity or less then
zero, which is physically impossible. In this paper, we
developed an accurate and conservative algorithm for the
volume fraction convection.

The remainder of this paper is arranged as follows.
Section 2 presents the configuration of a boom system and
the formulations of this problem. Numerical methods and
procedure are described in Section 3. The volume fraction
convection algorithm is also specified in this section. Re-
sults and discussion are given in Section 4, and the final
section gives conclusions.

2. Formulation of the Problem

2.1 Configuration of the Tested Design

A cross-sectional view of a newly designed boom system
by Wong and Kusijanovic [4] is illustrated in Fig. 1. On
the upstream is a ramp boom with an attack angle of 15◦.
Following the ramp boom there are three regular booms.
Between these booms are oil collection zones (C1, C2, and
C3). The dimensionless lengths in Fig. 1 are scaled by the
depth of the regular boom, such as boom A. The width of
the booms arranged in z direction is usually the same as
the span of the protection area, which is much longer than

Figure 1. The configuration of the innovative boom arrangement.

the depth of the booms. So it is reasonable to reduce this
problem to a two-dimensional problem.

2.2 Governing Equations

Suppose the velocity can be considered continuous across
the interface, and the interface tension can be ignored due
to the high Weber number in the experiment [4]. The
conservation equations of mass and momentum for this
two-layer flow can be written as:

mass equation

ρ,t + (ρui),i = 0 (1)

momentum equation

ρui,t + ρuiuj,j = −p,i − ρgδi2 + (µui,j),j (2)

where i, j=1, 2, and ui is the velocity component in the xi
(x1 =x, x2 = y) direction, t is time, p pressure, ρ density,
µ dynamic viscosity, g gravity, and δij the Kronecker delta.
The density and dynamic viscosity are supposed to be
linear to the volume fraction f [19]:

ρ = (1− f) · ρwater + f · ρoil
µ = (1− f) · µwater + f · µoil (3)

The definition of volume fraction f is the volume ratio of
oil in a small space element. In VOF code, the small space
elements are the computational cells, f =Voil/(∆x ·∆y)cell.
The conservation of oil subjects the volume fraction f to
the conservation law.

f,t + uif,i = 0 (4)

It is convenient to use the following dimensionless variables,
which can be obtained by choosing water density ρ, water
dynamic viscosity µwater, the draft L of regular boom
A, and uniform upstream velocity U0 as a dimensionally
independent set of variables:

x̄i =
xi
L
, t̄ =

tU0

L
, ūi =

ui
U0
, p̄ =

p

ρwaterU2
0

,

ρ̄ =
ρ

ρwater
, µ̄ =

µ

µwater
(5)
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After dropping the bars, the dimensionless governing equa-
tions become:

ui,i = 0 (6)

ρui,t + ρuiuj,j = −p,i + 1− ρ

Fr2
δi2 +

1

Re
(µui,j),j (7)

ρ = 1− f + fρoil

µ = 1− f + fµoil (8)

f,t + uif,i = 0 (9)

where Reynolds number, Re= ρwaterU0L/µwater, Froude
number, Fr=U0/

√
gL. Mass conservation equation (6)

can be derived from equations (1), (3), and (4).
The computational domain is showed in Fig. 1. The

incoming flow conditions are given by u1 =1, u2 =0.
The outlet conditions are given as p=constant and
u1,1 =u2,1 =0. In our computational cases, the free surface
is approximated by a rigid free-slip wall; then u1,2 =u2 =0.
On the bottom, rigid nonslip wall condition is used,
u1 =u2 =0.

As the initial condition at t=0, the fluid is assumed
stationary and the pressure is static. When dimensionless
time 0≤ t≤ 1, we disable the VOF process and just cal-
culate the flow field. The entrance velocity increases lin-
early with the time until the dimensionless velocity u1 =1.
When t> 1, the entrance velocity is kept at 1, and the
VOF begins to update the volume fraction field.

3. Numerical Method and Procedure

In VOF schemes, the volume fraction variable f is used
to reconstruct and convect the interface. An accurate
VOF scheme needs a correct and divergence-free velocity
field, an accurate interface reconstruction technique, and
an accurate convection scheme of volume fraction f . We
use the SIMPLER [20] scheme to solve the N-S equations.
Compared with the SIMPLE scheme, SIMPLER has a
faster convergence rate, which is desired by unsteady flow
calculation. The SIMPLER scheme is a finite-volume
scheme. The velocities are defined on the boundaries of
the volume cell. Thus VOF can use the exact velocities
directly instead of the interpolation ones. The last step
in SIMPLER is to correct the velocity field. In our
computations, we have triply corrected the velocity in each
iteration cycle to ensure a divergence-free velocity field.

The interface reconstruction scheme used in this work
is rooted in the FLAIR method, with some modifications
made by the authors. The main four steps taken in the
present scheme are:

Step 1. Mark the cell type. Every cell is marked by
one of the following three types. If f =0, this cell is marked
as light cell (water is called light fluid in this section); if
0<f< 1, this cell is marked as interface cell; in case of
f =1, if one of its neighbour cells satisfies f =0, this cell is
an interface cell, and otherwise is a dark cell (oil, the dark
fluid).

Step 2. Find the interface basis and slope in an in-
terface cell. Before calculating the slope of the interface
segment in a cell, the interface basis should be determined
by inspecting the volume fraction f distribution in its
vicinity area. The basis is on one side of the interface cell;
if we turn the basis to the bottom, the dark fluid is laid
above the basis, and the angle from the basis crossing the
dark fluid to the interface is an acute angle. The area is a
block of 3× 3 cells if all the interface sides are not laid on
a solid surface or a free surface (Fig. 2(a)), or it is a block
of 2× 3 cells if one side is impermeable (Fig. 2(b)). If a cell
has two impermeable sides, we use a simple treatment.

Figure 2. Determining the basis of an interface cell. The
dashed line indicates the possible basis.

Consider the case showed in Fig. 2(a). We determine
the interface basis by comparing the four average volume
fractions.

fN =
1

hx

1∑
k=−1

f(i+ k, j − 1) · dx(i+ k) (10)

fS =
1

hx

1∑
k=−1

f(i+ k, j + 1) · dx(i+ k) (11)

fW =
1

hy

1∑
k=−1

f(i− 1, j + k) · dy(j + k) (12)

fE =
1

hy

1∑
k=−1

f(i+ 1, j + k) · dy(j + k) (13)

where f(i, j) is volume fraction f in cell (i, j), and
hx =

∑1
k=−1 dx(i+ k), hy =

∑1
k=−1 dy(j+ k). If fP =

max(fN , fS , fW , fE), P ∈ (N,S,W,E), then the side P is
the basis. Actually, a common interface cell as showed in
Fig. 2(a) may have two suitable bases. They are side W
and S in this particular case. Therefore, when one side
of an interface cell is on the solid boundary or on the free
surface, at least one basis is still available from the other
three sides (side N in case of Fig. 2(b)).

If two sides of an interface cell are impermeable, the
flux directions on the other two sides must be opposed,
from one side into the cell and from the other out. In this
case, the donor–acceptor scheme is used to reconstruct and
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convect the interface. The basis is set to parallel to the
out-velocity direction.

If we make a rotation and let the interface stand above
the basis, we can use FLAIR algorithm to calculate the
slope of the interface. The slope angle may be positive
or negative. If it is a negative angle, we make a mirror
transformation in its vicinity area. For instance, if side S in
Fig. 2(a) is the basis, then the slope has a negative angle.
But if we rearrange its neighbour cells by exchanging the
west side and east side cells, the slope angle will be positive.

After the proper rotation and mirror transformation,
the interface geometry in a cell takes the form of one of the
four subcases listed in Fig. 3.

Figure 3. Four possible geometric subcases.

Step 3. Compute the fluxes. As mentioned before,
the convection of volume fraction f in VOF is not directly
obtained by solving equation (9). The approach is to use
the geometric information of the interface and the velocities
on the sides of the interface cell.

Most approaches found in the literature consider only
the flux exchange between the interface cell and its side
cell (the neighbour cell with which it shares a common
side), and ignore the flux exchange between it and its
corner cell (the neighbour cell with which it has an opposite
corner) (see Fig. 4(a)). It is obvious that inaccuracy will
result if the main fluid velocity is not parallel or vertical
to the sides of cells. After every time step, one can find
that the total volume of the dark fluid is changed, and in
some cells, f > 1 or f < 0 may occur. Some of the VOF-
based algorithms distribute the changed volume into cells
such that the total change remains zero. This procedure
artificially introduces numerical diffusion, and sometimes
it causes poorer results, especially when the velocity field
is complex and the number of computational steps is very
large. A new approach is carried out in this study, in
which every possible flux exchange has been taken into
account and the exact conservation condition is naturally
kept (Fig. 4(b)).

Figure 4. The convection of the volume fraction.

The combinations of the geometry and velocities can
form many subcases. In order to handle them uniformly
and efficiently, we adopt the following definitions.

• The velocity on a side is defined to be positive if it
flows out the interface cell, and be negative if it flows
into the interface cell.

• Three kinds of fluxes are defined for each side cell and
each corner cell and all fluxes are just calculated in
interface cells.

• Dark fluid volume flux flows from the interface cell to
the neighbour cell, Df .

• Light fluid volume flux flows from the interface cell to
the neighbour cell, Lf .

• Total volume flux flows from the neighbour cell to the
interface cell, Vf .

If any flux has a direction opposite to that of the definition,
then this value is just set to zero. For a corner cell, if the
velocities on its two sides have different signs, all its fluxes
are zeroes. Consider the fluxes between the interface cell
and SE corner cell (see Fig. 4(b)). Imagine that two
steps are taken in convecting the corner fluxes, first in x
direction and then in y direction. If in the first step fluxes
go to the east cell from the interface cell (uE > 0) and then
go north in the second step (uS < 0), no flux goes into SE
cell from this interface cell (in this case, uE ·uS < 0). But
if the fluxes go south in the second step (uS > 0), part of
fluxes that flowed into the east cell will flow into the SE
corner cell (in this case, uE ·uS > 0). Similarly, if uE < 0,
and uS < 0, fluxes from SE corner cell to west will turn to
the north, to the interface cell (in this case, uE ·uS > 0),
and if uE < 0 and uS > 0, no flux exchanges between SE
cell and the interface cell in this circumstance (uE ·uS < 0).

The calculation procedure is as follows:

• Calculate the side fluxes, the fluxes between the in-
terface cell and its side cells without considering the
corner fluxes.

• Calculate the corner fluxes, the fluxes between the
interface cell and its corner cells.

• Update each side flux by subtracting two associated
corner fluxes. For instance, each N side flux should
take the NW and NE corner fluxes out.

Step 4. Update the volume fraction field. After
obtaining the fluxes, we update the volume fractions of the
interface cell and its all neighbour cells in the same time.
Some cells may be the neighbour cells of other interface
cells or the interface cells, and will then undergo further
updating. The basic reason in defining fluxes is that the
outgoing fluxes are known because the volume distribution
in the interface cell is known. The following rules apply:

• If the neighbour cell is a dark cell, add Vf to the
interface cell and subtract Lf from the neighbour cell.

• If the neighbour cell is not a dark cell, add Df to the
neighbour cell and subtract Df from the interface cell.

Fluxes on an impermeable side do not need any special
treatment in this step. The reason is that on this side, the
velocity is zero and so are the fluxes.
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4. Results and Discussion

4.1 Validation Tests

The accuracy and reliability of the numerical methods used
in this work have been tested in many ways. Two global
parameters are always monitored:
global velocity-divergence,

δm =
∑

all cells

|∆u1∆x2 +∆u2∆x1|

and total dark fluid volume,

Vd =
∑

all cells

f∆x1∆x2

In our computations, the global velocity-divergence is
controlled in less than 10−2. When f is set to zero in
each cell, then the problem reduces to uniform fluid case.
In this way, we compared our results with Ertekin [21]
at Re=5000 and Dennis [22] at Re=100. (To compare
with Ertekin’s results, we modified the free surface condi-
tion to nonslip boundary condition.) We found excellent
agreement with both works.

To check the VOF scheme, many cases have been
tested. The fluctuation of the global parameter Vd is less
than 0.01% after every 1000 time steps when we apply
a given divergence-free velocity field. This error is just
caused by the single precision round-off error. Due to
space limitations, only two tests are discussed below. To
verify the results, we will suppose two fluids have the same
physical properties. Case 1 is free convection of a dark-
fluid circle. In this test, the velocity field is specified to be
uniform, so it is exactly divergence-free. In this way, we
can focus our attention on the VOF scheme itself. Different
velocity orientations against the grids were tested. In Fig.
5, the original circle has a diameter of 15 cells, and the
velocity field is given by u1 =1, u2 =−1. After 1000 time
steps, the dark circle keeps the perfect circle shape and its
volume only changes 0.003%.

Figure 5. Free convection of a circle. Time t and total
dark fluid volume Vd are dimensionless. Reference time
and volume are unspecified for general case.

Case 2 is similar to a flow visualization experiment.
In the upstream, three layers of dark fluid flow into the

computational domain and then pass through a vertical
barrier. Each layer is four cells wide at the entrance.
Because two fluids have the same properties, the dark
fluid does not disturb the flow and just acts as the trace
ink. When the flow field reaches its steady state, the dark
fluid layers should exactly follow the streamlines. In our
computation, the total dark fluid volume fluctuates only
0.01% in every 1000 time steps after the flow reaches its
steady state; from Fig. 6 we can see that the dark fluid
layers do not show any dispersion and are confined within
their streamlines, as they should be.

Figure 6. Three layers of dark fluid pass through a barrier
(Re=5000). x, y are scalar space, in dimensionless form.

4.2 Numerical Study of the Oil Boom Arrange-
ment

In the laboratory study of the boom arrangement, three
velocity regimes were found [4]. When the current velocity
is less than 0.2m/s, most of the oil will stay in the front of
the ramp boom. When it is greater than 0.25m/s and less
than or equal to 0.4m/s, most of the oil can be trapped
in the boom system. When the current velocity is greater
than 0.5m/s, the oil may mostly escape being trapped by
the booms.

In order to compare with the experimental results, we
chose our computational parameters to be the same as in
the laboratory experiment. The viscosities of water and
motor oil are 1.2× 10−3 N · s/m2 and 9.5× 10−2 N · s/m2,
densities, 103 kg/m3 and 8.7× 102 kg/m3, respectively.
The dimensionless oil density and viscosity are ρoil =0.84
and µoil =79.

The draft of the boom A is 4.5 cm, and the boom
arrangement is described in Fig. 1. In our computations,
we have selected a grid of 181× 81 to represent a rectangle
domain of 30 long by 7.5 deep. The grid is not uniform
in size. In the area where the oil may pass by or near the
boom system, the grid is very fine. Outside those areas,
the grid is asymptotically increased. The sides of the cells
vary from 0.05× 0.05 to 0.5× 0.2.

In order to understand the function of the ramp boom,
we calculate two cases for comparison. In Fig. 7, there
are one-fluid streamline plots when the flow reaches its
steady state condition at Re=7725. Fig. 7(a) is the case
without a ramp boom, and Fig. 7(b) with a ramp boom.
Comparing the two plots, one can deduce that the ramp
helps to trap the oil in two ways. First, the ramp guides
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the direction of the flow. When the fluid enters the oil
collection zones, it will have a lower vertical downward
velocity, and the oil will be prevented from overshooting
out of these zones. Another reason is that a large quiescent
oil collection zone is created by the ramp boom. As a
result, in the presence of the ramp boom, the buoyant force
has a longer action time to separate the fluids due to their
different densities.

Figure 7. Streamline plots of one-fluid cases. x, y are
scaled by the draft (L=4.5 cm) of boom A.

Figure 8. Initial condition for the following computational
cases (at t=0). x, y are scaled by the draft (L=4.5 cm) of
boom A.

Figure 9. The oil layer evolution with current velocity of 0.2m/s. x, y are scaled by the draft (L=4.5 cm) of boom A, and
the corresponding times are 1.125 s, 2.250 s, 3.375 s, 4.5 s, 6.75 s, and 9.0 s, respectively.

In the following section we present the computational
results of several current velocities. From their definitions,
Reynolds number and Froude number are directly pro-
portional to the current velocity when other physical pa-
rameters remain unchanged: Re=38625.0U0, Fr=1.505U0

where U0 is the current velocity, and it has the unit of
meter per second. The initial condition is the same for
each following computational case (Fig. 8).

With the current velocity U0 =0.2m/s, the dimension-
less parameters are Re=7725 and Fr=0.301. It appears
from Fig. 9 that the oil inertia cannot overcome the buoy-
ancy when it moves along the ramp boom. The oil goes
forward first and then goes backward. Only a little oil
enters collection zone C1; most of the oil stays in the front
of the ramp. A head wave is formed against the current
in the oil layer. This head wave was also found in exper-
imental investigation [4, 23]. Under the influence of the
buoyancy, the oil has a tendency to move up and stretch
out on the free surface, but the inertia of the oil and the
friction between water and oil make the oil follow the water
current. These opposite actions cause the head wave in the
front of the oil layer.

On the interface near the head wave, there is a strong
shear layer. The oil may form little droplets and enter the
water current owing to turbulence and Kelvin-Helmholtz
effect. This is the so-called entrainment failure of oil
containment by boom [24]. The entrainment failure occurs
in small space and time scales; it is not included in this
study.

When the current velocity increases to 0.25m/s, the
situation is very different. All of the oil passes through the
ramp boom and most of the oil is collected by zone C1 and
C2. Fig. 10 also shows that the oil is broken into pieces
and the interface is totally deformed when time is less than
30. But at time=40, the oil stays at the top in different
collection zones; the oil and water are well separated
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Figure 10. The oil layer evolution with current velocity of 0.25m/s. x, y are scaled by the draft (L=4.5 cm) of boom A, and
the corresponding times are 0.9 s, 1.8 s, 2.7 s, 3.6 s, 5.4 s, and 7.2 s, respectively.

Figure 11. The oil layer evolution with current velocity of 0.40m/s. x, y are scaled by the draft (L=4.5 cm) of boom A, and
the corresponding times are 0.5625 s, 1.125 s, 1.6875 s, 2.25 s, 3.375 s, and 5.4 s, respectively.

again. At this point, the present computational technique
has handled the two-layer flow in complex geometry very
well. More importantly, the criteria current velocity is
quantitatively close to the experimental value, between
0.2m/s and 0.25m/s.

At U0 =0.40m/s, most of the oil passes through col-
lection zone C1 and goes into zones C2 and C3 (Fig. 11).
Some oil escapes from the boom system. In this computa-
tional case, the oil collection efficiency of 70% is lower than
that of the experiment, which is 98% [4]. The thickness

of the incoming oil layer may be one of the reasons. In
the experiment, the incoming oil slick is very thin, about
0.2mm. But in the mesh system of our numerical simula-
tion, we cannot discretize the space that fine. When the
oil layer is two grids thick initially, it is 4.5mm thick in the
experiments. It can be seen that with a thicker incoming
oil layer, more oil will escape in the experiment.

More computational results are summarized in Fig.
12. The total oil volume collected by the studied boom
system decreases as the current velocity increases. But in
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Figure 12. Oil volume collected by zones versus current
velocity. Oil volume in a collection zone is the summation
of f∆x∆y in this zone. Total collected oil includes the oil in
collection zones 1, 2, and 3, and the oil in front of the ramp.
Oil volume is dimensionless scaled by L×L=20.25 cm2,
in the 2-D calculations.

each of three separated collection zones, the oil volume has
a peak value at a certain current velocity. The peak value
in the last zone appears when the current velocity is near
0.4m/s. In some sense, that oil passing through the ramp
boom is similar to throwing an object under the influence
of the gravity. If the shooting angle is fixed, the higher the
velocity, the longer the landing distance. When this kind
of landing point is on the outside of the last boom, most
of the oil will escape. This is the reason that the total
collected oil volume decreases quickly when the current
velocity exceeds 0.40m/s.

We can then arrange the booms by a longer separated
distance and find a suitable attack angle for the ramp boom
to achieve a good performance. But in fact two neighbour-
ing booms cannot be separated too widely; otherwise, the
still zones will no longer exist and the collected oil will
re-enter the current. Moreover, the effects of the density
and viscosity of the oil and the depth of the canal make
this problem much more complicated than the problem of
throwing an object.

5. Conclusion

An advanced interface convection technique in complex
geometry has been developed and applied to analyze an oil
boom arrangement design. This technique is based on the
numerical volume-of-fluid method. The volume fraction
convection is conservative and accurate in nature; no ad-
ditional artificial correction is necessary. The conceptual
interface basis and three types of fluxes are introduced
to handle the possible combinations of complex interface

geometry and the velocity field. These definitions make
this VOF algorithm easy to use. By using this scheme,
we preliminarily studied the performance of an oil boom
arrangement. Our computation shows that the ramp boom
creates a flow pattern for trapping the oil slick in the oil
collection zone. Three velocity regimes, which have been
found in the laboratory experiments, are also found in our
numerical simulations, and the critical velocities obtained
from the experiment [4] and our computations agree with
each other. The successful primary study shows that this
VOF scheme can be used in the computer-aided boom
arrangement design and in other interface applications.
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