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Safety is the top priority for every rail system in the world. A widely used 

measure for rail safety is the accident rate, which is the number of train 

accidents normalized by traffic exposure. Of"interest in rail safety research 

is understanding the temporal trend of accident rates, the significant fac­

tors affecting the trend, and how to predict accident rates. This paper uses 

a negative binomial r<--gression model to present a statistical analysis of 

ES. Class T railroad freight train derailment rates on main tracks by year 

and accident cause for 2000 to 20 U. The accident and traffic data used 

in the analysis come from FRI\ .. The analysis led to several observations. 

There is a significant temporal decline in freight train derailment rate 

(-5.9% per year). The rate of change in accident rate varied by accident 

cause. Rates of freight train derailment caused by broken rails or welds 

and track geometry defects declined by 6% and 5% annually, respec­

tively; the rate of derailment caused by bearing failure decreased by 11 % 

annually; and rate of derailment caused by train handling errors fell hy 

7% annually. The regression model is used to project train derailment 

rates by accident causes and can be used to evaluate the safety benefit 

of potential accident prevention strategies. This research provides policy 

makers and practitioners with a statistical method for analyzing the 

temporal trend of train accident rate for development of rail safety policy 

and practice. 

Rail offers a safe and efficient way to transport freight and passengers. 
Although rail transportation provides substantial societal benefits, 
train accident risks must be mitigated to the maximum extent feasible. 
Safety is critical for every rail system in the world. One common 
metric for assessing rail safety is accident rate. which is defined 
as the number of train accidents normalized by traffic exposure, 
such as train miles, car miles, gross ton-miles, or passenger miles 
(J .. ·7). In the United States, data on FRA .. reportabk accidents (acci .. 
dents whose damage cost to infrastructure, rolling stock, and signals 
exceeds a specified monetary threshold) and traffic exposure are 
reported by railroads to FRA. Using these data, the FRA publishes 
annual train accident rates. which have been extensively used in the 
development of rail safety policy and practice. 

The FR A-published accidenl rates were based on au empirical 
approach that uses reported (observed) accident count data divided by 
the corresponding traffic exposure (e.g., millions of train miles). This 
empirical approach provides a high-level. preliminary assessment of 
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rail operational safety performance; however, it does not show whether 
the change in accident rate is statistically significant. Generally, the 
empirical accident rate analysis is su ~ject to a statistical error called 
regression to the mean (RT!Vl) (8). The RTM refers to the tendency that 
a random variable that deviates from tbe mean will return lo normal 
given nothing has changed. In the context of rail safety. it implies that 
a high accident rate in one year may be followed by a low rate in the 
next year because of random variation, even if there is no actual safety 
change. For example, U.S. Class I railroad main line freight train 
derailment rate was 0 .843 per million train miles in 2006, followed by 
0.754 per million train miles in 2007. In this example, the empirical 
train derailmem rate declined by 10% [(0.843 ... 0.754)/0.843]. How­
ever, is this accident rate reduction statistically significant to indicate 
safety improvement'' More generally, how should the statistical trend 
of train accident rates be modeled so the associated safety implications 
are understood? This paper addresses both questions. 

METHODOLOGY 

Definition of Transportation Safety 

Transportation safety research communities widely accept the fol­
lowing notion of safety: '·Safety is the number of accidents by 
kind and severity, expected to occur on the entity during a specified 
period'' (8). A highlight of this notion is "the number of accidents 
that are expected to occur." The difference between the observed and 
the expected number of accidents represents the stochastic nature of 
accident occurrence. The following subsection illustrates a theoreti­
cal framework for modeling rail transportation safely, measured by 
the expected number of accidents. If the safety is measured by other 
metrics, lhe methodology can be adapted accordingly. 

Statistical Theory for Modeling Train 
Accident Occurrence 

It is assumed that each time a train enters a track segment there is a 
probability (p) that this train will be involved in an accident. Train 
accident probability is affected by infrastructure conditions. train 
characteristics, operational factors, environmental factors, and many 
other variables (1-3, 9, 10). With these conditions held constam, 
it can be assumed that accident probability is constant (assuming 
homogeneous track characteristics, rolling stock, and operational 
conditions within the study period). Under these assumptions, each 
train pass can be viewed as a Bernoulli experiment (the Bernoulli 
probability is denoted asp). The probability theory says that the 
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sum of independent, identically distributed Bernoulli variables 
constructs a binomial distribution (11): 

(1) 

where 

Ii = number of train accidents, 
N = total number of train passes on a given segment during the 

study period. and 
p = probability that a train is involved in an accident each time 

it enters a segment. 

Letting p = 'MN, given a large number of train passes (N is large) 
and relatively low accident probability (p is sufficiently small), 
Equation 1 can be revvTitten as 

(N)( A)" ( A )N-n lim P( X = n) = lim - 1 - -
N N n N N. 

=Poisson(/...) 

'A"exp(-'A) 

n! 

(2) 

Equation 2 indicates that the number of train accidents within traffic 
exposure can be approximated by a Poisson distribution. This ass ump·· 
tion was adopted in several previous studies (4-6, 12-15) without an 
explicit explanation of the rationale. In the Poisson distribution, the 
Poisson mean (Jc) represents the expected train derailment count. Esti­
mation of this parameter is based on sample data. Let 'A* represent an 
estimator of~-; ), * can be estimated as a function with a combination 
of predictor variables. The exponential function is commonly used to 
ensure that the estimated accident count is strictly nonnegative (4··-0) 
(Equation 3): 

I k \ 

'* - i "l x J ~,,. Ai --- expi L Jr ir J/1i 

\_p=O 

(3) 

where 

/,;=estimated (expected) derailment count on the ilh segment, 
bP = parameter coefficient for the pth predictor variable. 

X11' == pth predictor variable on the ith segment, and 
M, =traffic exposure (e.g., train miles) on the ith segment. 

Negative Binomial Regression 

Several studies have been performed to determine the best functions 
and estimators for quantifying the statistical association between the 
response variable (accident count) and affecting factors (traffic expo­
sure and infrastructure-related, equipment-related, and operational 
factors). Negative binomial regression (also called Poisson·· gamma 
regression) is prevalent in the literature (4-6, 16-19). This model 
allows for a larger-than-the-mean variance in accident count data. 
and it was shown lo be adequate in previous accident rate analyses 
(4···6, 8). In statistics, a negative binomial distribution can be inter·· 
preted as the probability distribution of the number of successes in a 
sequence of independent and identically distribmed Bernoulli trials 
before a specified number of failures occur (11 ). In lhe context of 
rail safety. this may be interpreted as the distribution of the num· 
ber of accidents given traffic exposure. Hilbe provided technical 
details of the negative binomial regression model and compared it 
with other types of regression models (20). This paper starts with 
this commonly used regression technique. If the negative binomial 
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regression model does not provide a good fit to the empirical data, 
other regression models wil I be developed. 

SCOPE OF THE ANALYSIS AND DATA SOURCES 

Research Scope 

This research addresses the following questions: 

l. Diel the U.S. freight train derailment rate change between 2000 
and 2012? 

2. How did this change vary by accident cause'l 
3. \Vhat are the predicted future accident rates? 
4. What are the safety implications of the results? 

All the analyses in this paper were focused on freight train derail­
ments of four U.S. Class I railroads on main tracks. Each Class I 
railroad has operating revenue exceeding $378.8 million (2009 
dollars). Class I railroads accounted for approximately 68% of U.S. 
railroad route miles. 97% of total ton· miles transported. and 94% 
of total freight rail revenue (21). Derailments are the most com· 
mon type of FR/\-reportable main line freight train accidents in the 
United Slates (22, 23). 

Accident Data 

FRA requires all railroads operating in the United States to submit 
detailed accident reports for accidents or incidents that exceeded a 
specified monetary threshold of damage cost to infrastructure, rolling 
stock, and signals. The reporting threshold is periodically adjusted 
for inflation and was increased to $10,500 in 2014 (24). FRA com­
piles these accident reports into the rail equipment accident database. 
which contains information about accident location, speed, consist 
type. and damage cost, along with other useful information. The data­
base has been widely used in previous rail safety studies(/, 3, 9, JO, 
13, 14, 22, 23, 2.5-28). 

Traffic Data 

Data on train miles are commonly used to analyze train derailment 
rate (1, 3-6, 29). Railroads report to FRA their monthly train-mile 
data. which are available through the FRAoperational data database. 

RESULTS 

Model 

This paper focuses on the temporal trend of train derailment rate. 
The predictor variable is year, representing the temporal change in 
accident rate. The model has the following basic structure: 

µ,=exp( a+ 13 x T, )M, 

where 

µ,=expected number of freight train derailments in year i, 
T; = year (for example, T; is 2000 for the year 2000), 

l\{ = millions of train miles in year i. and 
a.. 13 = parameter coefficients. 

(4) 
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TABLE 1 Regression Analysis Results of Final Model 

Standard Wald Pr> 
Parameter Estimate Error Chi-Square Chi-Square 

a 122.3752 16.168 57.29 <.0001 

~ -0.0612 0.0081 57.6 <.0001 

NoTE: Deviance= 54.18; degrees of freedom= 50, P = 0.32. 

This type of exponential function was used in several rail safety 
studies in Europe (4-6, 29). However, this statistical technique has 
not been widely used to analyze U.S. train accident rates. The data 
used for the statistical analysis include main line freight train derail­
ments for four Class I railroads and their traffic volumes measured 
by train miles for 2000 to 2012. 

Parameter Estimator 

The parameter coefficients (a, (3) were estimated with SAS com­
mercial software. The software generates each parameter estimator 
and its standard error by using the maximum likelihood method in 
a negative binomial model (Table 1). The last column in Table 1 is 
the P-value of a parameter estimator, which represents the statisti­
cal significance of a predictor variable using the Wald test (20). A 
generally acceptable rule is that if a predictor variable has a P-value 
smaller than 5%, this variable is significant. The analysis found that 
the parameter coefficient for the year variable is significantly nega­
tive ((3 < 0, P < .0001 ), indicating that there is a significant temporal 
decline in train derailment rate for all four Class I railroads. 

Model Evaluation 

The goodness of fit of a negative binomial model can be evaluated 
with a statistical criterion called deviance (20). Statistical theory says 
that the deviance asymptotically follows a chi-square distribution 
(20). On the basis of this property, the P-value in the deviance test can 
be calculated. In general, if the P-value in the deviance test is larger 

1.2 ... 
Q) 
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~ 1.0 

a: U) 
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Q) :1E 
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than 5%, the model appears to be an adequate fit to the empirical data 
( 4--6, 16). Through model diagnostics, the expected number of Class I 
main line freight train derailments is estimated as 

µ; = exp(122.3752- 0.0612T;)M; 

Equation 5 is mathematically equivalent to 

µ 
-' = exp(122.3752- 0.06127;) 
M; 

Define 

(5) 

(6) 

(7) 

where Z; is the expected freight train derailment rate per million 
train miles in year i. 

From Equations 6 and 7, the expected train derailment rate at a 
specific year is estimated as follows: 

Z; = exp(122.3752- 0.06127;) (8) 

From Equation 8, the annual reduction in derailment rate is 

Z-ZI 
8;= ' ,_ =exp(-0.0612)-1=-5.9% 

Z;-1 

(9) 

where 8; is the annual percentage change in train derailment rate in 
year i compared with the previous year. 

Equation 9 indicates that freight train derailment rates declined 
by an average of 5.9% annually from 2000 to 2012. If this trend 
continues, train derailment rates can be projected (Figure 1 ). 

The projected (expected) train derailment rate in 2013 is 0.44 per 
million train miles according to the regression model based on the 
2000-to-2012 trend, compared with the observed (empirical) derail­
ment rate of 0.453 based on the FRA train safety data. This result 
appears to indicate a reasonable accuracy of the regression model. 
Further analysis can be conducted to evaluate the uncertainty in 

0.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 

Year 

FIGURE 1 Empirical Cdotl versus estimated main line freight train derailment rates Cline), 
four Class I railroads, 2000 to 2012 !projected derailment rates for 2013 to 20171. 
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statistical prediction and to quantify the confidence interval of the 
projected accident rate. The temporal change in the overall accident 
rate is conceivably a net result of changing accident rate by accident 
cause, which is discussed in the next subsection. 

failures (lOE\ and train handling errors (09H) are common deraihnent 
causes on Class r main lines (22, 23), so they are used as an example in 
this paper to illustrate the methodology for analyzing accident-cause­
specific derailment rates (Table 2). The methodology can be adapted 
to other accident causes as well. 

Accident-Cause-Specific Train Derailment Rate 
For each accident cause group, a similar exponential function 

is developed with the negative binomial regression, as described 
previously: 

(10) 

FRA specifies more than 300 accident causes accounting for a vari­
ety of circumstances and conditions that may result in train accidents 
(30). These causes are hierarchically organized and classified into five 
categories: track. equipment, human factor, signal. and miscellaneous 
(30). Within each of these major cause groups, FRA organizes individ­
ual cause codes into subgroups of related causes, such as roadbed and 
track geometry. within the track group and similar subgroups within 
the other major cause groups (30). This paper uses a variation on the 
FRA subgroups developed by Arthur D. Little, Inc. (ADU, in which 
similar cause codes were combined into groups according to expert 
opinions (31). ADL's groupings are similar to the FRA subgroups but 
are more fine-grained. allowing greater resolution for certain causes. 
The ADL cause groups \Vere used to analyze accident-cause--specific 
derailment frequency and severity in previous studies (13, 23, 32, 33). 

Broken rails or welds (08T), track geometry defects (04T), bearing 

where Zci is the accident-cause-specific freight-train derailment rate 
per million train miles in year i. 

TABLE 2 Selected Accident Cause Groups 

ADL Cause Group 

OST (broken rails or welds) 

04T (track geometry defects. 
excluding wide gauge) 

I OE (bearing failures) 

09H (train handling errors. 
excluding braking errors)" 

FRACause 
Code 

T202 
T203 
T204 
T207 
T208 
T210 
T212 
T218 
T219 
T220 
T221 

TlOI 
T102 
T103 
TI04 
T105 
Tl06 
T107 
TI08 
T199 

E52C 
E53C: 

HSOl 
H502 
H503 
H504 
H505 
H506 
H507 
H508 
H509 
H522 
H523 
H524 
H599 

An individual negative binomial regression model was devel­
oped for each cause group. To gain a larger sample size, the four­
railroad combined derailment data by accident cause were used. The 
deviance test (20) shows that each regression model is adequate 
(Table 3). 

Based on the data in Table 3, the following models are used lo 
estimate accident-cause-specific annual train derailment rates on 
Class I main lines: 

zi,rnil = exp(124.0330 - 0.06307;) 

Description 

Broken rail-base 
Broken rail--weld (planll 
Broken rail-weld (field) 
Broken rail-detail fracture from shelling or bead check 
Broken rail-engine burn fracture 
Broken rail-head and web separation (outside joint bar limits) 
Broken rail---horizontal split head 
Broken rail-piped rail 
Rail defect ·,vith joint bar repair 
Broken rail-transverse/compound fissure 
Broken rail---vertical split head 

Cross level of track irregular (at joints) 
Cross level of track irregular (not al joints) 
Deviation from uniform top of rail profile 
Disturbed ballast section 
Insufficient ballast section 
Superelevation improper, excessive, or insufficient 
Superelevation runoff improper 
Track alignment irregular (other than buckled-sun kink) 
Other track geometry defects (provide detailed description in narrative) 

Journal (plain) failure from overheating 
Journal (roller bearing) failure from overheating 

Improper train makeup at initial tenni nal 
Improper placement of cars in train between terminals 
Buffing or slack action excessive. train handling 
Buffing or slack action excessive, train makeup 
Lateral drawbar force on curve excessive, train handling 
Lateral dra·,vbar force on curve excessive, train makeup 
Lateral drawbar force on curve excessive, car geon1etry \short car-long car con1binat]on) 
Improper train makeup 
Improper train inspection 
'l11rottle (power), improper use 
Throttle (power). too rapid adjustment 
Excessive horsepower 
Other causes relating to train handling or makeup (provide detailed description in narrative) 

(11) 

"Author added additional cause codes to A DL Category 09H. which originally included only H52,i and H599 (32). 
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TABLE 3 Parameter Estimates of Accident-Cause-Specific 
Freight Train Derailment Rate, Class I Main Lines, 2000 to 2012 

Standard Wald 
Parameter Estimate Error Chi-Square 

Broken Rails or Weldsa 

a 124.0330 22.0284 31.7 

~ -0.0630 O.Oll 32.87 

Track Geometry Defectsb 

a 102.7100 37.5337 7.49 

~ -0.0527 0.0187 7.93 

Bearing Failures' 

a 223.8361 41.684 28.84 

~ -O.ll32 0.0208 29.64 

Train Handling Errorsd 

a 141.8327 41.1829 11.86 

~ -0.0724 0.0205 12.44 

aDeviance= 12.1; degrees of freedom (df) = 11; P = .36. 
bDeviance = 13.0; df = 11; P = .29. 
'Deviance= 140· df= 11· P= 23 
dDeviance= 11:1: df= 11> = :3s: 

Z;.geo= ny = exp(102.7100 - 0.05277;) 

Z;·"'"';"g = exp(223.8361- 0.11327;) 

Z;.h,001 ;0 g = exp(141.8327 - 0.07247;) 

0.20 

0.15 

]! 0.10 

:iE 
c: 0.05 
·~ 
1-

·=2 0.00 2000 
:iE .... 
Q) 
c.. 
.l!! c: 0.20 
Q) 

.§ 
·~ 0.15 
Q) 

c 
c: 
"f! 0.10 
I-

0.05 

0.00 

• 

2005 

(a) 

• • 

Pr> 
Chi-Square 

<.0001 

<.0001 

0.0062 

0.0049 

<.0001 

<.0001 

0.0006 

0.0004 

(12) 

(13) 

(14) 

2010 

2000 2002 2004 2006 2008 2010 2012 

(c) 
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where 

Z;.ran = expected broken rail-caused train derailment rate per 
million train miles, 

Z;.geometry = expected track geometry defect-caused train derailment 
rate per million train miles, 

Z;.bm;ng = expected bearing failure-caused train derailment rate 
per million train miles, and 

Z;.hondUng = expected train handling error-caused train derailment 
rate per million train miles. 

The empirical and estimated train derailment rates for the four acci­
dent causes were compared (Figure 2). Broken rails had a higher derail­
ment rate than the other accident causes, highlighting the importance 
of prevention of broken rail (14, 22, 23). The annual rate of change in 
accident-cause-specific derailment rate is estimated as follows: 

• Broken rails or welds, -6%; 
• Track geometry defects (excluding wide gage), -5%; 
• Bearing failures, -11 % ; and 
• Train handling errors (excluding braking errors), -7%. 

The analysis shows that bearing failures and train handling errors 
had a higher percentage reduction in annual derailment rate, compared 
with track geometry defects and broken rails within the same study 
period. The temporal trends of accident-cause-specific derailment 
rates were compared (Figure 3). Given these trends, broken rails 
may continue to be leading derailment causes. Bearing failures had a 
higher derailment rate than train handling errors until 2010 but have 
had a lower derailment rate since then, in part because the rate of 
bearing failure-caused derailments is declining faster ( 11 % reduction 
per year). 

0.20 

0.15 

0.10 

0.05 

0.00 
2000 

0.20 

0.15 

0.10 

• • 
• 

2005 

(b) 

• • • 
2010 

0.05 r~.:-...... L...:.T-.... -;;.;-....... .., .... ~ .. J 
0.00 

2000 2002 

Year 

2004 2006 2008 2010 2012 

(d) 

FIGURE 2 Class I railroad freight train derailment rate on main lines by accident cause, 2000 to 2012: Cal broken 
rails or welds, !bl track geometry defects !excluding wide gage), !cl bearing failures, and !di train handling errors. 
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0.16 

0.14 

... 
Q) 0.12 c.. 
Q) U) 
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- I-
'iii c: 
... 0 

0.06 Q) ·-c;: 
c: :1E 
'iii 0.04 ... 
I-

0.02 

0.00 
1995 2000 2005 2010 2015 2020 
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FIGURE 3 Temporal trend of freight train derailment rate by accident cause !projected derailment 
rates for 2013 to 20171. 

DISCUSSION OF RESULTS 

In this section, implications of this research for rail transportation 
safety and risk analysis are discussed. 

Temporal Change in Rail Safety 

This research found that the overall freight train deraihnent rate on 
U.S. Class I railroad main lines declined by 5.9% annually from 2000 
to 2012. This change may in part be a result of continued investment 
in infrastructure and rolling stock, safety culture, operations, training 
and education, research, and other safety initiatives. The analysis also 
found that annual derailment rates are statistically identical among 
the four Class I freight railroads. However, the change of derail­
ment rate could vary by accident cause. The top two train deraihnent 
causes (broken rails and track geometry defects) had similar declining 
rates (approximately 5% to 6% annual reduction), whereas bearing 
failure-caused train derailment rate had a more significant decline 
(11 % annual reduction). 

Implications for Transportation Risk Analysis 

Many train safety and risk analyses were based on the average acci­
dent rate information within a multiyear study period. Because of 
the declining accident rate, use of the average accident rate may not 
represent up-to-date rail operational safety. An adjustment factor may 
be needed for estimating the most recent accident rate according to 
historical safety trends when no better information is available. In the 
long run, risk analysis for rail safety should be revisited periodically 
and revised to reflect changes in accident rate and other risk factors. 

ONGOING RESEARCH 

Causal Analysis of Train Derailment Rate 

The intent of this research was exploratory rather than explanatory. 
That is, this work focused on identifying the temporal trend, instead 
of explaining why it exists. The causal relationship between train 

accident rate and affecting factors requires future research to gain 
a better understanding of the causal factors of rail safety and how 
changing these factors may affect safety (25). 

Analysis of Train Derailment Severity 

This paper focused on train deraihnent rate (likelihood). Train derail­
ment severity (e.g., number of cars derailed, property damage, casual­
ties) also is critical in railroad safety and risk analysis (22, 23). Train 
deraihnent severity may vary by accident cause, accident speed, train 
length, and other factors (10). The next step of this work is to incor­
porate train derailment severity into a larger rail safety management 
framework. 

Analysis of Crude Oil Transportation Risk 

This study included all types of train accidents. Of recent interest is 
the rate of crude oil train accidents. The negative binomial regres­
sion model described in this paper can be used to model the tem­
poral variation in crude oil train accident rate and thus evaluate the 
safety trend before and after the implementation of certain safety 
improvement strategies. 

CONCLUSION 

A statistical methodology was developed for modeling the temporal 
trend of U.S. Class I railroad freight train deraihnent rates on main 
lines from 2000 to 2012. Within the study period, the analysis shows 
that the national freight train deraihnent rate decreased by 5.9% per 
year. Broken rails or welds were the leading deraihnent cause, and the 
deraihnent rate for this cause declined by 6% per year. Track geom­
etry defects, bearing failures, and train handling errors all had declin­
ing train deraihnent rates, among which the deraihnent rate reduction 
caused by bearing failures was more substantial, at an 11 % reduction 
per year. For 2017, the projected overall train derailment rate is about 
0 .34 per million train miles (a 64% reduction compared to 2000) if the 
current safety trend continues. The time-varying accident rate should 
be taken into account in train safety and risk analyses and decisions. 
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